
The Case of the Fake Picasso: Preventing History Forgery
with Secure Provenance

Ragib Hasan
rhasan@illinois.edu
University of Illinois

at Urbana-Champaign

Radu Sion
sion@cs.stonybrook.edu
Stony Brook University

Marianne Winslett
winslett@illinois.edu
University of Illinois

at Urbana-Champaign

Abstract
As increasing amounts of valuable information are pro-
duced and persist digitally, the ability to determine the
origin of data becomes important. In science, medicine,
commerce, and government, data provenance tracking
is essential for rights protection, regulatory compliance,
management of intelligence and medical data, and au-
thentication of information as it flows through workplace
tasks. In this paper, we show how to provide strong
integrity and confidentiality assurances for data prove-
nance information. We describe our provenance-aware
system prototype that implements provenance tracking
of data writes at the application layer, which makes it
extremely easy to deploy. We present empirical results
that show that, for typical real-life workloads, the run-
time overhead of our approach to recording provenance
with confidentiality and integrity guarantees ranges from
1% – 13%.

1 Introduction
Provenance information summarizes the history of the
ownership of items and the actions performed on them.
For example, scientists need to keep track of data cre-
ation, ownership, and processing workflow to ensure a
certain level of trust in their experimental results. The
National Geographic Society’s Genographic Project and
the DNA Shoah project (for Holocaust survivors search-
ing for remains of their dead relatives) both track the pro-
cessing of DNA samples. Individuals who submit DNA
samples for testing through these programs want strong
assurances that no unauthorized parties will be able to
see the provenance of the samples (e.g., provide it to in-
surance companies or anti-Semitic organizations).

Regulatory and legal considerations mandate other
provenance assurances. The US Sarbanes-Oxley Act
[56] sets prison terms for officers of companies that is-
sue incorrect financial statements. As a result, offi-
cers have become very interested in tracking the path
that a financial report took during its development, in-

cluding both input data origins and authors. The US
Gramm-Leach-Bliley Act [40] and Securities and Ex-
change Commission rule 17a [55] also require docu-
mentation and audit trails for financial records, as do
many non-financial compliance regulations. For exam-
ple, the US Health Insurance Portability and Account-
ability Act mandates logging of access and change histo-
ries for medical records [13].

Provenance tracking of physical artifacts is relying in-
creasingly on digital shipping, manufacturing, and lab-
oratory records, often with high-stakes financial incen-
tives to omit or alter entries. For example, pharmaceuti-
cals’ provenance is carefully tracked as they move from
the manufacturing laboratory through a long succession
of middlemen to the consumer. Clinical trials of new
medical devices and treatments involve detailed record-
keeping, as does US FDA testing of proposed new food
additives.

To help manage the above processes, digital prove-
nance mechanisms support the collection and persistence
of information about the creation, access, and transfer
of data. While significant research has been conducted
on how to collect, store, and query provenance infor-
mation, the associated integrity and privacy issues have
not been explored. But without appropriate guarantees,
as data crosses application and organization boundaries
and passes through untrusted environments, its associ-
ated provenance information becomes vulnerable to il-
licit alteration and should not be trusted.

For example, consider the repudiation incentives in the
following real-life anonymized medical litigation sce-
nario. Alice visited Dr. B for consultation. B referred her
to Dr. Mallory for tests, and sent Alice’s medical records
to Mallory, who failed to analyze the test results prop-
erly, and provided incorrect information to B. B provided
these reports along with other information to Dr. C, who
treated Alice accordingly. When Alice subsequently suf-
fered from health problems related to the incorrect diag-
nosis, she sued B and C for malpractice. To establish

Mallory’s liability for the misdiagnosis, B and C hired
Audrey as an expert witness. Audrey used the prove-
nance information in Alice’s medical records to establish
the exact sequence of events, which in this case impli-
cated Mallory. If Mallory had been innocent, B and C
should not be able to collude and falsely implicate him.
Similarly, if Mallory altered his faulty diagnosis in Al-
ice’s medical records after the fact, Audrey should be
able to detect that.

Making provenance records trustworthy is challeng-
ing. Ideally, we need to guarantee completeness – all
relevant actions pertaining to a document are captured;
integrity – adversaries cannot forge or alter provenance
entries; availability – auditors can verify the integrity
of provenance information; confidentiality – only autho-
rized parties should read provenance records; and effi-
ciency – provenance mechanisms should have low over-
heads.

In this paper, we propose and evaluate mechanisms
for secure document provenance that address these prop-
erties. In particular, our first contribution is a cross-
platform, low-overhead architecture for capturing prove-
nance information at the application layer. This archi-
tecture captures the I/O write requests of all applications
that are linked with the library, extracts the new data be-
ing written and the identity of the application writing it,
and appends that information to the provenance chain for
the document being written. Further, the resulting prove-
nance chain is secure in the sense that a particular entry in
the chain can only be read by the auditors specifically au-
thorized to read it, and no one can add or remove entries
from the middle of the chain without detection. Our sec-
ond contribution is an implementation of our approach
for file systems, along with an experimental evaluation
that shows that our approach introduces little overhead at
run time, only 1%–13% for typical real-life workloads.

2 Provenance Model
In this section, we define basic provenance-related con-
cepts and discuss deployment and threat models.

2.1 Definitions and Usage Model

A document is an abstraction for a data item for which
provenance information is collected, such as a file,
database tuple, or network packet.

We define provenance of a document to be the record
of actions taken on that particular document over its life-
time. Note that this definition differs from the informa-
tion flow provenance used in PASS [38] and some other
systems. Each access to a document D may generate a
provenance record P . The types of access that should
generate a provenance record and the exact contents of
the record are domain-specific, but in general P may
include the identity of the accessing principal; a log of

the access actions (e.g., read, write) and their associ-
ated data (e.g., bytes of D or its metadata read/written);
a description of the environment when the action was
made, such as the time of day and the software envi-
ronment; and confidentiality- and integrity-related com-
ponents, such as cryptographic signatures, checksums,
and keying material. A provenance chain for document
D is a non-empty time-ordered sequence of provenance
records P1| · · · |Pn. In real deployments, the chain is
associated and transported together with a document D.

In a given security domain, users are principals who
read and write to the documents, and/or make changes
to document metadata. In a given organization, there are
one or more auditors, who are principals authorized to
access and verify the integrity of provenance chains as-
sociated with documents. Every user trusts a subset of
the auditors. There can be an auditor who is trusted by
everyone, and referred to as the superauditor.

Documents, and associated provenance chains are
stored locally in the current user’s machine. The local
machines of the users are not trusted. Each user has com-
plete control over the software and hardware of her local
machine and storage. Documents can be transferred from
one machine to another. A transfer of a document from
one machine to another also causes the provenance chain
to be transferred to the recipient.

Adversaries are inside or outside principals with ac-
cess to the chains, who want to make undetected changes
to a provenance chain for personal benefit. We do not
consider denial of service attacks such as the total re-
moval of a provenance chain.

We assume readers are familiar with semantically se-
cure (IND-CPA) encryption and signature mechanisms
[22] and cryptographic hashes [34]. We use ideal,
collision-free hashes and strongly unforgeable signa-
tures. We denote by Sk(x) a public key signature with
key k on item x. a|b and a, b denote concatenating b af-
ter a.

2.2 Threat Model

In this paper, we focus on tracking document writes
and securing the provenance information associated with
them. We leave as future work the questions of how to
ensure that provenance information is always collected,
how to track document reads efficiently, and certain other
technical issues discussed below. We now discuss the
reasons for choosing this focus.

A provenance tracking system implemented at a par-
ticular level is oblivious to attacks that take place outside
the view of that level. For example, suppose that we im-
plement provenance tracking in the OS kernel. If the ker-
nel is not running on hardware that offers special security
guarantees, an intruder can take over the machine, sub-
vert the kernel, and circumvent the provenance system.

2

Thus, without a trusted pervasive hardware infras-
tructure and an implementation of provenance tracking
at that level, we cannot prevent all potential attacks on
provenance chains. Even in such an environment, a ma-
licious user who can read a document can always memo-
rize and replicate portions thereof later, minus the appro-
priate provenance information. For example, an indus-
trial spy can memorize technical material and reproduce
it later on in verbatim or edited form. Overall, it is im-
practical to assume that we have the ability to fully mon-
itor the information flow channels available to attackers.
Thus, our power to track the origin of data is limited.

Fortunately, in many applications of provenance-
aware systems, illicit document copying and/or complete
removal of provenance chains are not significant threats.
For example, in cattle tracking, we are not worried that
someone will try to steal a (digital record of a) cow and
try to pass it off as their own. Similarly, a cow with no
provenance record at all is highly suspect, and many dif-
ferent parties would have to collude to fabricate a con-
vincing provenance history for that cow. Instead, the pri-
mary concern is that a farmer might want to rewrite his-
tory by omitting a record showing that a particular sick
cow previously lived at his feed lot. As another appli-
cation, a retail pharmacy will not accept a shipment of
drugs unless it can be shown that the drugs have passed
through the hands of certain middlemen. Thus, if an
enterprising crook wants to sell drugs manufactured by
an unlicensed company, he might want to forge a prove-
nance chain that gives the drugs a more respectable his-
tory, in order to move them into the supply chain. Simi-
larly, there is little danger that someone will remove the
provenance chain associated with a box of Prada acces-
sories, and try to pass them off as another brand. In-
stead, the incentive is to pass off non-Prada accessories
as Prada. This is very hard to do, as a colluder with
the ability to put the Prada signature on the accessories’
provenance chain needs to be found. Anyone who can do
that signature is a Prada insider, and Prada insiders have
little incentive to endorse fake merchandise.

Of course, there are applications where there are sig-
nificant incentives to track data reads and for malicious
parties to sever documents from their original prove-
nance chains. For example, one may track the flow of
intelligence information so that it can be traced back to
its original source. It is possible to track all reads and
then use that to track information flows. However, do-
ing that is expensive, especially in the long run as prove-
nance chains get longer and longer. It is impossible to
offer complete provenance assurances in such situations,
but certain measures can be taken, such as digital water-
marking and kernel-level tracking of all data read by a
writing process [38] (which is expensive due to the need
to log all data read). Overall, however, we believe that

in the presence of any non-trivial threat model, tracking
read operations for the purpose of provenance collection
is impractical and necessarily insecure, because the ad-
versary can always read data through unmonitored chan-
nels and produce verbatim or edited copies. Thus, we
will not consider the tracking of read operations further
in this paper.

The primary threat we guard against in this paper is
undetected rewrites of history, which occur when ma-
licious entities forge provenance chains to match illicit
document writes and metadata modifications. Specifi-
cally, suppose that we have a provenance chain ([A], [B],
[C], [D], [E], [F]), in which, for simplicity, each en-
try is denoted by the identity of its corresponding prin-
cipal A,B,C, Then, we will provide the following
integrity and confidentiality assurances:

• I1: An adversary acting alone cannot selectively re-
move other principals’ entries from the start or the
middle of the chain without being detected by the
next audit.
• I2: An adversary acting alone cannot add entries

in the beginning or the middle of the chain without
being detected by the next audit.
• I3: Two colluding adversaries cannot add entries

of other non-colluding users “between” them in the
chain, without being detected by the next audit.

For example, colluding users B and D cannot unde-
tectably add entries between their own, corresponding to
fabricated actions by a non-colluding party E.

• I4: Once the chain contains subsequent entries
by non-malicious parties, two colluding adversaries
cannot selectively remove entries associated with
other non-colluding users between them in the
chain, without being detected by the next audit.

E.g., colluding users B and D cannot remove entries
made by non-colluding user C.

An adversary in possession of a document can always
eliminate all elements in the chain, starting from the last
colluding party’s entry in the chain. For example, a ma-
licious F could remove the entry for E, if D cooperates,
and claim that the chain is ([A], [B], [C], [D], [F]). This
however, is a denial-of-service attack that cannot be pre-
vented through technical means only. Two parties could
always collude in this manner in real life through out-
side channels. Thus, we target chain forgeries that ma-
liciously add new chain entries and make after-the-fact
modifications.

• I5: Users cannot repudiate chain records.
• I6: An adversary cannot claim that a valid prove-

nance chain for one document belongs to a different
document (lineage forgery), without detection at the
next audit by a superauditor, if not sooner.

3

• I7: If the adversary alters a document without ap-
pending appropriate provenance records to its chain,
this will be detected at the next audit by a superau-
ditor, if not sooner.
• C1: Any auditor can verify the integrity of the chain

without requiring access to any of its confidential
components. Unauthorized access to confidential
provenance record fields is prevented.
• C2: The set of parties originally authorized to read

the contents of a particular provenance record forD
can be further restricted by subsequent writers ofD.

For illustration purposes, consider Bob, Charlie, and
Dave editing document D, in that order. The resulting
provenance chain contains chronologically ordered en-
tries made by these users. Suppose that, Bob performed
an operation on D using a proprietary algorithm, and
does not want the workflow he used to be revealed to
anyone except auditor Audrey. Property C1 ensures that
Bob can selectively reveal the records pertaining to his
actions on D to Audrey. Audrey can verify the integrity
of the chain and read Bob’s action record, while other
auditors can only verify the integrity of the chain.

Suppose that Dave subsequently decides to release D
to George, who should not learn the private informa-
tion in Charlie’s provenance records. Property C2 allows
Dave to give George the provenance chain minus Char-
lie’s sensitive information, while still allowing George to
verify the integrity of the chain.

3 A Secure Provenance Scheme
We propose a solution composed of several layered
components: encryption for sensitive provenance chain
record fields, a checksum-based approach for chain
records and an incremental chained signature mechanism
for securing the integrity of the chain as a whole. For
confidentiality (C1), we deploy a special keying scheme
based on broadcast encryption key management [24, 27]
to selectively regulate the access for different auditors.
Finally, for confidentiality (C2), we use a cryptographic
commitment based construction. In the following, we
detail these components.

3.1 Building Blocks

3.1.1 Chain Construction
Provenance records (entries for short) are the basic units
of a provenance chain. Each entry Pi denotes a sequence
of one or more actions performed by one principal on a
document D:

Pi = 〈Ui, Wi, hash(Di), Ci, publici, Ii〉,

where

• Ui is an opaque or plaintext identifier for the principal;
• Wi is an opaque representation of the sequence of docu-

ment modifications performed by Ui;

• hash(Di) is a cryptographic hash of the newly modified
contents of D;

• Ci contains an entry integrity checksum;
• publici is an optional opaque or plaintext public key cer-

tificate for user Ui;
• Ii contains keying material for interpreting the preceding

fields.

As a practical matter, at the start of an editing session,
the provenance system should verify that the current con-
tents of D match its hash value stored in the most recent
provenance record.

We discuss each of these fields in the following sub-
sections.

3.1.2 Confidentiality

Let wi be a representation of the sequence of document
modifications just now performed by Ui. The choice
of representation for wi is dictated by the application
domain; for example, wi could be a file diff, a log of
changes, or a higher-level semantic representation of the
alterations. The representation should be reversible, if
we want to allow auditors to check whether the current
contents of D match its declared history; otherwise the
representation does not have to be reversible. Given wi,
Wi is an encrypted version of wi: Wi = E(wi).

In the remainder of this section, we discuss options for
E that satisfy the C1 confidentiality requirement.
Strawman Choices of E. If all auditors should be able
to read all entries, we can encrypt all wi using a single se-
cret key k shared with the auditors via a central keystore.
I.e., E(wi) = ek(wi). If only a subset of the auditors
should be able to read wi, then Ui can encrypt one copy
of wi for each auditor that Ui trusts:

E(wi) = {eKA(wi) : KAis the public key of A,

an auditor Ui trusts}

This is inefficient, asUi has to include multiple copies of
wi, which may be quite large. One solution approach is
to let each auditor in the provenance system correspond
to an auditor role in the larger environment, and use ma-
chinery external to the provenance system to determine
who can get access to the auditor role and to track the
activities of auditors. Still, the number of different audi-
tor roles can become quite large in a real-world institu-
tion. For example, a medical record might be audited by
lab technicians, billing people, the patient, her guardians,
physicians, and insurers, each with different rights to see
details of what was done to the record. Hence, the use of
auditor roles external to the provenance system needs to
be coupled with internal measures to minimize the size
of entries.

To save space, Ui can encrypt wi with a session key
ki unique to this entry, and also include the (shorter) ses-
sion key ki encrypted with the public keys of the trusted

4

auditors. That is,

E(wi) = eki(wi)

Ii = {eKA(ki) : KA is the public key of A,

an auditor Ui trusts}

In the rest of this paper, we assume that each entry em-
ploys a session key. Still, Ii may have to include many
encrypted auditor keys.
Broadcast Encryption for E. To reduce the number
of keys that must be included in Pi, we employ broad-
cast encryption [24, 27]. We illustrate with a specific
instance, but any broadcast encryption approach can be
used here.

Given a set of up to n auditors during the lifetime ofD,
we build a broadcast encryption tree of height dlogNe.
Each leaf corresponds to one auditor, and each node con-
tains a public/private keypair in a PKI infrastructure. We
give all the public keys in the tree to every user and audi-
tor. In addition, we give each auditor the private keys in
all the nodes on the path from its own leaf to the root.

To allow all auditors to access an entry, we encrypt
the session key ki with the public key in the root of the
tree and store it in Ii. Any auditor can then decrypt Wi

using the private key in the root node (known only to
auditors). Similarly, if Ui trusts a single auditor A, we
encrypt ki with the public key kA at the leaf for A, so
that Ii = ekA

(ki). If Ui trusts an arbitrary subset S of
auditors, we set

Ii = {ekB
(ki) : B is the public key of a node in R},

where R is a minimum-size set of tree nodes such that
the set of descendants of R includes all the leaves for
auditors in S, and no other leaves. This approach can
significantly reduce the size of Ii, as Ii includes only
log(n− |S|) copies of ki.

If Ui should be opaque, the session key ki can be used
to hide the identity U of the user responsible for the doc-
ument modifications represented in entry Pi. U should
identify the principal in a manner appropriate for the ap-
plication domain. For example, in a file system we can
define U as:

U = 〈userID, pid, port, ipaddr, host, time〉

In an application domain where Ui should be opaque, we
can set Ui = eki

(U), where ki is the session key defined
above. The same can be done for U ’s public key certifi-
cate publici. Authorized auditors can use Ii to decrypt
Ui and publici.

In some application domains, we may need finer-
grained control over which auditors and users can see
which details of an entry, rather than using a single ses-
sion key to encrypt all sensitive fields in an entry. For

example, we might be willing to let the billing auditors
decrypt Ui but not Wi. In this case, one option is to use
additional session keys for the other sensitive fields of
the entry, so that we can control exactly which auditors
can see which fields.
Threshold Encryption. To address separation-of-duty
concerns, we can partition the set of auditors into groups,
so that decryption of Wi requires joint input from at
least one auditor from each group. Alternatively, we
can require that at least k different authorized auditors
act jointly to decrypt Wi. For these two approaches, we
employ secret sharing and threshold cryptography for Ii
[49]. Under the first approach, each group has a differ-
ent share of the session key ii, and we use the broadcast
encryption keys to encrypt those shares. Each auditor
can decrypt the share for her group. Under the second
approach, there are as many different shares as auditors,
and a minimum threshold number of auditors must col-
laborate to decrypt Wi.

3.1.3 Integrity
Principle C1 says that every auditor can verify every
provenance chain, even if he or she cannot decrypt some
of its Wi fields. In some application domains, it is ap-
propriate to allow every user to act as an auditor in this
weak sense. In this situation, we can define the integrity
checksum field Ci of an entry as:

Ci = SUi(hash(Ui, Wi, hash(Di), publici, Ii)|Ci−1),

where SUi
means that user Ui signs the hash with

his or her private key. We refer to this approach as
signature-based checksums, as it creates a signature
chain that enforces the integrity assurances I1-I7 for
each individual entry and for the chain itself. For a
user Audrey to be able to verify the chain, she must be
able to tell which user wrote each entry in the chain,
and have access to their public keys. This can be
accomplished by storing the Ui and, if present, publici
fields as plaintext; if the publici field is empty, Audrey
must find the public key for Ui through external means.
Audrey can then verify the integrity of the provenance
chain by parsing it from beginning to end and using the
Ci values to verify the integrity of each entry. She can
also verify that the current contents Dn of D match its
hash in Pn. However, she cannot check that Dn was
computed properly from Dn−1 unless she is allowed
to decrypt Wn, i.e., she is given access to the session
key kn, and a reversible representation was used for
wn. To verify that all of these transformations were
performed correctly, Audrey must retrieve her keys from
the broadcast encryption tree and use them to decrypt
the Ii field of each entry. The Ii field holds the session
key for each entry, which she can use to decrypt all of
the entry’s fields, thus obtaining the wi fields. From Dn

and reversible wn Audrey can compute Dn−1 and verify

5

that it matches its hash in Pn−1. Audrey can repeat this
process with wi−1, continuing until the entire evolution
of D has been verified. If Audrey is not authorized to
access all of the session keys for D, then she can only
verify that the most recent j entries match the contents
of D, where session key kn−j is the most recent session
key that she cannot access.

3.1.4 Fine-Grained Control Over Confidentiality

As mentioned earlier, the all-or-nothing approach to
allowing auditors to view sensitive fields will be too
coarse-grained for some applications. Sometimes it may
be hard to foresee which fields may become sensitive
over time, especially for a long-lived document that may
cross boundaries between organizations. For example,
the confidentiality needs for the testing of a particular
National Geographic DNA sample may be met perfectly
by a particular set of auditors and session keys, as long
as the sample stays at its original processing location
(the University of Arizona). However, a very small per-
centage of samples produce ambiguous or seemingly un-
likely results (rare genotypes), and these are sent for ad-
ditional rounds of testing at other labs. When a sample’s
chain is sent out to a lab in England, the details of previ-
ous testing should be eliminated to prevent bias in inter-
preting the results of the new rounds of tests.

To provide flexibility in such situations without a pro-
liferation of broadcast encryption keys, we can use cryp-
tographic commitments [6] for subfield and field data
that may eventually be deemed sensitive. With such a
scheme, we can selectively omit plaintext data entirely
when sending D’s chain to a new organization, regard-
less of whether such a need was foreseen when setting
up the session key(s) for D. The plaintext information
can be restored to the chain if, for example, D later
finds its way back to its original organization. To achieve
this level of control without a proliferation of encryption
keys, we replace each potentially sensitive plaintext sub-
field s inside Ui or Wi by its commitment before com-
puting the checksum for Pi:

comm(s) = hash(s, rs),

where rs is a sufficiently large random number.
During construction of the signature-based checksum,

the provenance system uses these hashes instead of the
actual data items. For example, the name of an unusual
test performed in Wi can be replaced by a commitment,
while leaving the other more typical tests in Wi in plain-
text. When Arizona sends the chain to an internal party
trusted to view the plaintext version of Ui and/or Wi,
both the commitments and the original plaintext values
of the unusual test s and rs will be included as usual in
the provenance entry. When Arizona sends the chain to

a lab in England, Arizona can remove the plaintext for s
and rs and send only their commitments. Since the chain
checksums were computed using the commitments rather
than the plaintext data, the English lab can still verify
the integrity of the chain. Access to sensitive values is
prevented until the chain returns to the University of Ari-
zona, which can reinstate the plaintext in the chain. If the
English lab chooses to send out the sample for additional
testing, it may choose to omit all the plaintext from all
the Arizona entries of the chain. This level of flexibility
would be awkward to build into the provenance system
using only session keys, but is easily accomplished with
commitments.

3.1.5 Augmenting Provenance Chains

While the integrity checksums of Section 3.1.3 com-
pletely satisfy the assurances I1-I7, we can introduce fur-
ther optimizations for faster verification and integrity-
preserving summarization of long provenance chains.
Provenance chains tend to grow very fast, often becom-
ing several magnitudes in size larger than the original
data item and requiring compaction [14]. With our aug-
mented chains, we can compact the chain by remov-
ing irrelevant entries, while preserving the validity of
integrity verification mechanisms, without requiring re-
computing the signatures.

The integrity spiral, a redundant, multiple-linked
chain mechanism, is conceptually similar to skip-lists
[43]. The basic idea is to compute the checksum(s) of
each provenance entry by combining the (hash of the)
current entry, and multiple previous checksums. We pro-
vide two constructions with different properties and us-
ages.
Construction 1. The first construction computes the
checksum Ci of the provenance entry Pi as follows

Ci = SUi(hash(Ui, Wi, hash(Di), publici, Ii)

|Cprev1 | · · · |CprevR),

where R is the spiral dimension, and Cprevk
represents

a checksum chosen at random from preceding entries in
the provenance chain.
Advantages. This construction allows quick detection
of forgery of entries. Suppose that Mallory modifies the
entry Pi and computes a new checksum C ′i based on the
forged entry and the preceding part of the chain. In the
singly-linked mechanism, this will be detected when the
auditor checks the checksum for Pi+1, which Mallory
is unable to forge (per I2). However, the auditor will
have to verify the entire chain up to and including the
entry Pi to detect this. We enable quick local verification
by construction 1, in which multiple subsequent entries
will be dependent on the checksum Ci of Pi. The new
checksumC ′i added by Mallory will cause the checksums
of these dependent entries to fail, and therefore expose

6

Mallory’s forgery. To evade detection, Mallory will have
to modify the checksums of all these entries, which in
turn will affect further subsequent entries.
Construction 2. In our second construction, we con-
struct a spiral checksum Ci as follows:

Ci = Ci1 |Ci2 | · · · |CiR
|Ci0 ;

where R is the spiral dimension, and Cij
is defined as:

SUi
(hash(Ui, Wi, hash(Di), publici, Ii)|Ckj

) if j > 0,

SUi
(hash(Ui, Wi, hash(Di), publici, Ii)|Ci1

|Ci2
| · · · |CiR

) if j = 0

where k < i. Note that, unlike Construction 1, we no
longer have a single checksum per entry; rather we use
more than one independently computed checksum per
entry.
Advantages. Using this construction, we can perform
quick verification. The auditor may choose to disregard
the linear checksum (i.e. the chain that links to the pre-
vious entry’s checksum) and use any of the other dimen-
sions. Based on the maximum spiral dimensionR of that
chain, it might reduce the cost of verification of an N
entry chain to bN

R c. If the chain is constructed such that
all entries belonging to a particular event type are linked
by a given dimension of the checksum, then the auditor
can skip irrelevant entries, but still be able to verify the
integrity of the events she is looking for.

Rather than choosing previous checksums randomly,
we can use a systematic approach towards building the
spiral. For example, to construct Ci, we use checksums
from previous entries at distance 1, 2, . . . , 2R. In Con-
struction 1, these checksums are all concatenated to the
hash of the current entry, while in Construction 2, these
R checksums are separately concatenated with the hash
of current entry, and signed to form a collection of R
checksums pertaining to the current entry.
Integrity-preserving Summarization. Using construc-
tion 2, we can compact a provenance chain while still
being able to preserve integrity verification mechanism.
If Pj occurs after entry Pi in the chain, and Pj’s set
of checksums Cj has a checksum Cjk

computed from
a checksum Cik

from the set Ci (using Construction 2),
then that checksum can be used to verify the order of
these two entries. If there are d entries between Pi and
Pj , we can then remove these entries, while being able to
prove the order. This is not contrary to I1, as the auditor
can useCjk

to verify the order of Pi and Pj , while detect-
ing that d entries have been removed in between them. If
Pi and Pj are not directly connected by a checksum, but
have an intermediate entry Pm, such that a checksum ex-
ists in Cm that proves Pm occurs after Pi, and a check-
sum exists in Cj that proves Pj occurs after Pm, then
we can keep Pm and remove all other entries between Pi

and Pj during compaction. We can extend this technique
to link any two entries using some intermediate nodes
between them.

3.1.6 Chain Operations

As discussed in Section 2.2, we are concerned with
tracking data write operations and document metadata
changes – including changes in permissions and other
document metadata. We now discuss the impact of doc-
ument operations on the corresponding secured prove-
nance chains. Although our discussion refers specifically
to file system operations, the same semantics are appro-
priate for other scenarios, including relational databases.

read No impact on the provenance chain.
write A new provenance chain entry is created.
chmod or chown These operations change document

metadata. For example, chown can be used to add
a new user to the list of users with write access.
The change in metadata is recorded as a provenance
event.

copy A duplicate copy of the original document is cre-
ated, with no change in the original document or its
provenance. The original document’s provenance
chain is copied into the new document’s provenance
chain. A new entry is then added to the new chain,
to record the copy operation itself.

delete The document will be removed from the file sys-
tem, but its provenance chain is not deleted. The
delete operation is recorded as a metadata operation
in the provenance chain. The chain is kept until it
expires (determined by its expiration timeout).

If users were guaranteed not to circumvent the
provenance-aware read operation (e.g., by reading di-
rectly from disk), we could support read-related prove-
nance entries by persisting per-principal provenance con-
texts containing all information ever read, similar in na-
ture to propagated access list mechanisms [58]. How-
ever, as discussed in Section 2.2, we believe that this
would give the illusion of security but not the reality, be-
cause principals have access to outside information chan-
nels. Also, promulgation of provenance for read opera-
tions tends to result in a combinatorial explosion in over-
head that can ultimately render the system unusable [38].

3.2 Correctness

The mechanisms introduced above satisfy the integrity,
confidentiality and privacy properties outlined in Sec-
tion 2.

Theorem 1. An adversary cannot remove entries from the
beginning or the middle of the chain without detection (I1). An
adversary cannot add entries in the beginning or the middle of
the chain without detection (I2).

Proof. (sketch) The proof is straightforward. For (I1)
let us assume that an adversary Mallory has removed the
entry Pi, 0 < i < n. Since the integrity checksum field
Ci+1 of the subsequent entry is computed by combining

7

the current checksum Ci with Wi+i under an ideal cryp-
tographic hash function, its verification will fail, there-
fore revealing the removal of Pi. Similarly, for (I2), any
addition of chain entries will be detected in the verifica-
tion step through the checksum components.

Theorem 2. Once the chain contains any subsequent entries
by non-malicious users, a set of colluding adversaries cannot
insert or remove entries between them in the chain (I3, I4).

Proof. (sketch) The chained nature of the integrity
checksum directly ensures this. Specifically, suppose
that Eve and Mallory are two colluding adversaries who
are part of the chain, with entry Pe followed by Pm later
on in the chain. Moreover, let Pa be non-colluding Al-
ice’s entry following Eve’s and Mallory’s. The chain will
thus be 〈. . . Pe, . . . , Pm, . . . , Pa, . . .〉. Due to the collision-
free, one-way nature of the chained integrity checksum
fields, any modification in the chain entries between Pe

and Pm will naturally show up when attempting to verify
Pa’s checksum.

As discussed in Section 2, if Pm is the last element
in the chain, Mallory can always remove all entries be-
tween Pm and any previous entry by a colluding party,
e.g., Pe. This DOS attack cannot be prevented through
technical means alone.

Theorem 3. When checksums are constructed using formula
from Section 3.1.3, users cannot repudiate an entry (I5).

Proof. (sketch) This follows by construction when in-
tegrity checksum Ci is implemented using the non-
repudiable signatures of Section 3.1.3.

Theorem 4. An adversary cannot successfully claim that a
valid provenance chain for a given document belongs to a doc-
ument with different contents (I6).

Proof. (sketch) This follows directly from the collision-
free nature of hashing and the fact that a hash of the cur-
rent document contents is included in each chain entry,
which is then authenticated using the chained Ci check-
sums. Substituting the chain for a different document
will be detected by a super auditor when a checksum
fails to verify.

Theorem 5. If a document’s contents are inconsistent with
its history as recorded in a provenance chain with a reversible
or plaintext representation for wi fields, then any superauditor
can detect the discrepancy (I7).

Proof. By definition, a superauditor can decrypt all de-
tails of the wi field in each entry, if the wi fields are
encrypted with session keys. Otherwise, the wi fields
are available in plaintext. After verifying the chain, the
superauditor can apply the wi entries in reverse, repeat-
edly verifying that the hash of Di included in entry Pi

matches the hash of its recreated contents. At the last
verification, D0 should be the empty document.

If a non-reversible representation is used for thewi en-
tries, or the auditor is not a superauditor, the auditor may
still be able to tell that the chain is inconsistent with the
current contents of D. E.g., if a chain entry says that all
document appendices were deleted, and no subsequent
entry added any appendices, then application-domain-
dependent reasoning lets an auditor conclude that some-
thing is wrong if the document has appendices.

Theorem 6. Any auditor can verify the chain (C1). Auditors
can only decode entry details for which they are authorized.

Proof. (sketch) This also follows directly by construc-
tion. When deploying non-repudiable signature-based
checksums as in Section 3.1.3, chain verification in-
volves only public key signature operations and no other
secret values. It can thus be performed by any party.

Now consider the question of whether unauthorized
parties can access the details of entries. We argue the
case where a single session key ki is used to encrypt all
sensitive details in the entry, and the key itself is pro-
tected using broadcast encryption; the argument is sim-
ilar if multiple session keys or a single shared key are
used for this purpose. First, a session key ki for Wi is
accessible only to principals that can retrieve it by de-
crypting at least one item in set Ii. If a principal can de-
crypt one of these items, then it possesses a private key
in the broadcast encryption tree, and must therefore be
an auditor represented by a leaf in the subtree rooted at
the private key in question. Thus the principal is an audi-
tor who should be allowed to obtain the session key, and
therefore should be allowed to see all data encrypted with
it, including Wi and (if encrypted) Ui and publici.

Finally, we discuss chain verifiability when crypto-
graphic commitments are used for potentially sensitive
plaintext, and the plaintext is subsequently removed.

Theorem 7. The use of cryptographic commitments in place
of potentially sensitive plaintext subfields of Ui or Wi does not
affect the verifiability of the chain.

Proof. (sketch) The checksum component of the entry
is computed by using cryptographic commitments rather
than the sensitive data item’s plaintext. Hence, if the
plaintext is removed when releasing to an untrusted prin-
cipal, the chain remains verifiable, as the verification
mechanism only requires the commitment. The chain in-
tegrity is also not compromised, due to unforgeability of
signatures on the checksum entries for other users.

8

4 Empirical Evaluation
Several avenues are available for implementing secure
provenance functionality: in the operating system kernel,
at the file system layer, or in the application realm.
Kernel Layer. In this implementation approach, prove-
nance record functions are handled by trapping ker-
nel system calls, similar to the approach taken in the
Provenance-aware Storage System (PASS) [38]. The
main advantage of this approach is its transparency to
user level applications and the file system layer. Major
drawbacks include the fact that the logic and higher level
data management semantics are not naturally propagated
to the kernel, thus limiting the types of provenance-
related inferences that can be made. Yet another draw-
back of such an approach is its limited portability, as any
new deployment platform will require porting efforts.
File System Layer. The file system can be made
provenance-aware and augmented to transparently han-
dle securing collected provenance information. Similarly
to the kernel layer implementation, one of the main ad-
vantages of such an approach is transparency. However,
persisting provenance state transparently inside the file
system layer will reduce the portability of the provenance
assurances, e.g., when provenance-augmented files tra-
verse non-compliant environments.
Application Layer. In this approach, the provenance
mechanisms are offered through user-level libraries. This
can still maintain the transparency of the previous ap-
proaches while also allowing for a high degree of porta-
bility, i.e., by being independent of kernel and file sys-
tem layer instances. The provenance libraries can be lay-
ered on top of any file system, making rapid prototyping
and deployment very easy. Moreover, through dynamic
linking and by maintaining a compatible interface, exist-
ing user applications do not need to be recompiled for
provenance-awareness.

4.1 The Sprov Library

We implemented a prototype of the secure provenance
primitives as an application layer C library, consisting
of wrapper functions for the standard file I/O library
stdio.h. The resulting library is fully compatible with
stdio functionality, in addition to transparently handling
provenance assurances. We used the basic model intro-
duced in Section 3.1.2 and 3.1.3 in this prototype.

In Sprov, a session is defined as all the operations per-
formed by a user on a file between file open and close.
When a file is opened in write or append mode, Sprov
initiates a new entry in the provenance chain of the file.
Information about the user, application, and environment
are collected. During write operations, Sprov gathers in-
formation about the writes. to the file before it is closed.
Sprov uses a reversible representation of document mod-
ifications; as discussed earlier, this allows strong verifi-

cation of the relationship between current document con-
tents and the document’s provenance chain. The prove-
nance chain can be used as a rollback log, which can
form the basis of a versioning file system; we leave this
for future work.

At file close, the session ends. Sprov writes a new en-
try in the provenance chain for the changes made dur-
ing this session. At this point, the cryptography (imple-
mented using openssl [54]) associated with the chain in-
tegrity constructs is executed, as described in Section 3.1.
The provenance chain is stored in a separate meta-file for
portability.

We provide utilities to facilitate provenance collection
and transfer. When a user logs into her system, the plogin
utility is invoked, which initializes the session keys and
loads the user’s preferences and list of trusted auditors.
Copying and deletion of a provenance-enabled file uses
the pcopy and pdelete utilities, respectively, as discussed
in Section 3.1.6. Finally, the pmonitor daemon periodi-
cally scans for and removes expired provenance chains.

4.2 Experiments

Our experiments employed x86 Pentium 4 3.4GHz hard-
ware with 2GB of RAM, running Linux (Suse) at ker-
nel version 2.6.11. In this configuration, each 1024-bit
DSA signature took 1.5ms to compute. The experiments
used a mix of four of the following drive types: Seagate
Barracuda 7200.11 SATA 3Gb/s 1TB, 7200 RPM, 105
MB/s sustained data rate, 4.16ms average seek latency
and 32 MB cache, and Western Digital Caviar SE16 3
Gb/s, 320GB, 7200 RPM, 122 MB/s sustained data rate,
4.2ms average latency and 16MB cache.

We conducted our experiments using multiple bench-
marks in a quest to match several different deployment
settings of relevance. In each case, we compared the
execution times for the baseline unmodified benchmark
(with no provenance collection at all), with a run with
secure provenance enabled. We deployed (i) PostMark
[26] – a standard benchmark for file system performance
evaluation, (ii) the Small and Large file microbenchmark
that has been used to evaluate the performance of PASS
[38, 48], and (iii) a custom transaction-level benchmark
meant to test the performance in live file systems with
file sizes distributed realistically [2, 16], and real-life file
system workloads [17, 28, 44].

We also evaluated two different configurations for
storing the provenance chain. In the first configuration,
provenance chains were recorded on disk (Config-Disk),
while in the second one, provenance chains were stored
in a RAM disk, with a pmonitor chron daemon periodi-
cally flushing the chain to disk (Config-RD).

9

15

20

25

30
O

v
e

rh
e

a
d

(P

e
rc

e
n

ta
g

e
)

Overhead1

Overhead2

0

5

10

0 10 20 30 40 50 60 70 80 90 100

O
v

e
rh

e
a

d

(P

e
rc

e
n

ta
g

e
)

Read-write-bias (percentage of read transactions)

Figure 1: Overhead of secure provenance with Postmark. Overhead1
indicates the overhead using Config-Disk, while Overhead2 is from
Config-RD setting. The overheads are shown from 0% read bias (100%
write transactions) to 100% read bias (no write transactions).

4.2.1 Postmark Benchmark

We measured the execution time of the Postmark bench-
mark [26] with and without the Sprov library. A data set
containing 20,000 Postmark-generated binary files with
sizes ranging from 8KB to 64KB was subjected to Post-
mark workloads of 20000 transactions. Each transaction
set was a mixture of writes and reads of sizes varying
between 8KB and 64KB. We sampled the performance
overhead under different write loads by varying the read-
write bias from 0% to 100% in 10% increments (i.e. the
percentage of write transactions was varied from 100 to
0%). The overheads are illustrated in Figure 1 for both
Config-Disk and Config-RD and range from 0.5% to 11%
for Config-RD.

4.2.2 Small and Large File Microbenchmarks

The small and large file microbenchmarks [48] have been
used in the evaluation of PASS [38]. The small file mi-
crobenchmark creates, writes to and then deletes 2500
files of sizes ranging from 4KB, 8KB, 16KB, and 32KB.
We benchmarked the overhead for file creation as well
as synchronous writes. The results for Config-Disk are
displayed in Figure 2.

An interesting effect can be observed. Similar to the
experiments in PASS, the overhead percentage is quite
high for small files and decreases rapidly with increasing
file sizes. We believe this effect can be attributed to disk
caching. Specifically, for very small file size accesses -
which go straight to the disk cache, the main overhead
culprit (crypto signatures) dominates. As file sizes in-
crease, additional real disk seeks are incurred in both
cases and start to even out the execution times. Even-
tually, the overhead stabilizes to under 50% for larger

250

300

350

400

450

O
v

e
rh

e
a

d
 (

P
e

rc
e

n
ta

g
e

)

Create

Write-seq

0

50

100

150

200

0 5 10 15 20 25 30 35

O
v

e
rh

e
a

d
 (

P
e

rc
e

n
ta

g
e

)

File Size (KB)

Figure 2: Small file system microbenchmark create and write perfor-
mance for 2500 files.

files which suggests that roughly 1-3 seek times are paid
per file and the secure case adds the equivalent of another
seek time (the crypto signature).

no prov sprovCD %Overhead sprovCRD %Overhead

Seq-write 13.084 13.328 1.87% 13.308 1.71%
Rand-write 15.211 15.390 1.18% 15.285 0.48%

Table 1: Overhead (in seconds) for large file microbenchmark, un-
der Config-Disk (CD) and Config-RD (CRD).

The small file microbenchmark only measures the ef-
fect of writes to many small files [38]. Often, writes
to large files can provide more representative estimates
of typical overheads in file systems. Thus, next we de-
ployed the Large file benchmark as described in PASS.
We performed the sequential-write and random-write
operations of the benchmark. Both unmodified and
provenance-enhanced versions of the benchmark were
run, and this time, the disk write-caches were turned off
to eliminate un-wanted disk-specific caching effects.

The benchmark consists of creating a 100 MB file by
writing to it sequentially in 256KB chunks, followed by
writing 100MB of data in 256KB units written in random
locations of the file. The overheads for sequential and
random writes are presented in Table 1. In both cases
(Config-Disk and Config-RD), the overheads are consid-
erably lower than the overheads reported in [38], despite
the additional costs of recording all the file writes to its
provenance chain.

4.2.3 Hybrid Workload Benchmark

Benchmarks like Postmark are useful due to their stan-
dardized nature and ability to replicate the results. Addi-
tionally we decided to evaluate our overheads in a more
realistic scenario, involving practical, documented work-

10

25

30

35

40

45

50
O

v
e

rh
e

a
d

 (
p

e
rc

e
n

ta
g

e
)

0

5

10

15

20

25

20000 30000 40000 50000 60000 70000 80000 90000 100000 110000

O
v

e
rh

e
a

d
 (

p
e

rc
e

n
ta

g
e

)

Number of write transactions

1024-append 4096-append 1024-rand 4096-rand

Figure 3: Overhead for different number of write transactions and data
sizes, at 100% write load (Config-Disk).

loads and file system layouts. We constructed a layout
as discussed by Douceur et.al [16], which showed that
file sizes can be modeled using a log-normal distribution.
We used the parameters µe = 8.46, σe = 2.4 to gener-
ate a distribution of 20,000 files, with a median file size
of 4KB, and mean file size of 80KB, along with a small
number of files with sizes exceeding 1GB to account for
large data objects, as suggested in [2, 16].

Our first workload on this dataset involved fixed num-
ber of write transactions. Under the Config-Disk setting,
we performed 25K, 50K, 80K, and 100K write transac-
tions. Between each experimental runs, we recreated the
dataset, cold-booted the system, and flushed file system
buffers to avoid variations caused by OS or disk caching.
In each transaction, a file was opened at random, and a
fixed amount of data (1KB and 4KB) was written into it.
We measured the overhead for both appends and random
writes. These are shown in Figure 3. Constant overheads
can be observed for each of the 4 configurations, with ap-
pend situated between 32% and 42%, and random writes
between 26% and 33%.

Next, we modeled the percentage of write to read
transactions according to the data in [17, 28, 44] which
suggest this varies from 1.1% to 82.3%. To this end,
we deployed information about workload behavior and
used parameters for the instructional (INS), research
(RES) [44], a campus home directory (EECS) [17], and
CIFS corporate and engineering workloads (CIFS-corp,
CIFS-eng) [28]. The RES and INS workloads are read-
intensive, with the percentage of write transactions less
than 10%. The CIFS workloads are less read-intensive,
with the read-write ratio being 2 : 1. The EECS work-
load has the highest write load, with more than 80% write
transactions. The results are shown in Figure 4 and 5, for
both the disk-based (Config-Disk) and the RAM-disk op-

20

25

30

35

40

O
v

e
rh

e
a

d
 (

p
e

rc
e

n
ta

g
e

)

INS-1 RES-1 CIFS-corp-1 CIFS-eng-1 EECS-1

0

5

10

15

20

0 50000 100000 150000 200000 250000

O
v

e
rh

e
a

d
 (

p
e

rc
e

n
ta

g
e

)

Number of transactions

Figure 4: Overhead for various types of workloads (Config-Disk).

4

5

6

7

8

O
v

e
rh

e
a

d
 (

p
e

rc
e

n
ta

g
e

)

INS-2 RES-2 CIFS-corp2 CIFS-eng2 EECS-2

0

1

2

3

4

0 50000 100000 150000 200000 250000

O
v

e
rh

e
a

d
 (

p
e

rc
e

n
ta

g
e

)

Number of transactions

Figure 5: Overhead for various types of workloads (Config-RD).

timized (Config-RD) modes.

Read-intensive workloads can be seen as almost over-
head free, with less than 5% overheads for both RES and
INS (this goes down to less than 2% for the RAMdisk-
optimized mode). For write intensive workloads, the
overheads are higher, but still less than 14% for the
CIFS workloads (Config-Disk), and less than 36% for
EECS (Config-Disk). With the RAMdisk-optimization,
the overheads go down to less than 3% for CIFS and
around 6.5% for EECS.

Summary. Sprov facilitates collection of provenance
with integrity and confidentiality assurances, while in-
curring minimal overhead. Read performance is unaf-
fected by the use of Sprov. Benchmarks show that, with
the Config-RD setting, use of Sprov incurs an overhead
less than 3% in a multitude of realistic workloads.

11

5 Related Work
Researchers have categorized provenance systems for
science [50] and investigated the question of how to
capture provenance information, typically through in-
strumenting workflows and recording their provenance
[3, 4, 7, 37, 52, 53]. Other provenance management
systems used in scientific computing include Chimera
[18] for physics and astronomy, myGrid [60] for biol-
ogy, CMCS [39] for chemistry, and ESSW [19] for earth
science.

Another technique is to collect provenance informa-
tion at the operating system layer, with the advantage of
being hard to circumvent and the disadvantages of be-
ing expensive and hard to deploy. The Provenance-aware
Storage System (PASS) [8, 38] takes this approach using
a modified Linux Kernel. While PASS does not actu-
ally record the data written to files, it collects elaborate
information flow and workflow descriptions at the OS
level. Our techniques of securing provenance chains can
be used to augment PASS or any such system to provide
the security assurances at minimal cost.

The database community has explored a variety of
aspects of provenance, including the notions of why-
provenance and where-provenance and how to support
provenance in database records and streams (e.g., [9, 10,
11, 12, 57, 59]). Others have examined the applications
of provenance to social networks [21] and information
retrieval [31].

Overall, the body of research on provenance has fo-
cused on the collection, semantic analysis, and dissem-
ination of provenance information, and little has been
done to secure that information [8, 25]. One exception is
the Lineage File System [46], which automatically col-
lects provenance at the file system level. It supports ac-
cess control in the sense that a user can set lineage meta-
data access flags, and the owner of a file can read all of
its lineage information. However, this does not meet the
challenges (I1-I7,C1-2) for confidentiality, integrity and
privacy of provenance information outlined in [8, 25] and
discussed in this paper.

Outside the domain of provenance, researchers have
used entanglement – mechanisms of preserving the his-
toric states of distributed systems in a non-repudiable,
tamper-evident manner [32, 45]. This provides similar
assurances to the ones sought here for the realm of sys-
tems, yet does not handle provenance for information
flows and individual data records.

Source code management systems (SCM) target the
provenance needs of a particular application domain. For
example, Subversion [15], GIT [30], or CVS [5] with se-
cure audit trails can provide integrity assurances for ver-
sions in a centralized file system. GIT, Monotone [1],
and several other systems also provide support for a dis-
tributed infrastructure. These systems employ a logically

centralized model where users maintain local histories
and use a virtual (centralized) repository to merge and
synchronize their local repositories. Our approach is in-
tended for applications with a more fully decentralized
model, where documents and their histories are physi-
cally passed between users in separate administrative do-
mains that may not trust one another. In addition, as our
approach is intended to meet the needs of many poten-
tial applications, we have worked to provide much higher
performance than a SCM system requires

Verifiable audit trails for versioning file systems can
use keyed hash-chains to protect version history [42].
Under this approach, auditors are fully trusted and share
a symmetric key with the file system for creating the
MACs. The audit authenticators need to be published to
a trusted third party, which must provide them accurately
during audits. Our approach must also handle malicious
auditors who could easily falsify the audit.

Similarly to audit trails, secure audit logs based on
hash chains have been used in computer forensics [47,
51]. Such schemes work under different system and
threat models than secure provenance. By their very na-
ture, audit logs are stationary and protect the integrity
of local state. In contrast, provenance information is
highly mobile and often traverses multiple un-trusted do-
mains. Moreover, audit logs rarely require the selective
confidentiality assurances needed for provenance. For
example, the mechanisms proposed in [47] secure logs
as a whole, but do not allow authentication of individual
modifications. Additionally, provenance is usually asso-
ciated with a digital object (e.g. file). This association
introduces attacks that are not applicable to secure au-
dit logs. Finally, a majority of schemes function under
the assumption of single (or very few) parties process-
ing the audit log and computing checksums – a different
model from the case of provenance chains where multi-
ple principals’ access is required throughout the lifetime
of a provenance chain.

Secure Untrusted Data Repository (SUNDR)[29] pro-
vides a notion of consistency for shared memory (called
fork consistency) akin to the integrity property provided
for provenance records in our systems. While our tech-
niques for ensuring chain integrity are related to those
used in SUNDR, the adversarial model of SUNDR is
different from ours. In SUNDR, a set of trusted clients
communicate with an untrusted server storing a shared
filesystem. In contrast, our system does not employ a
central server, and allows any number of users to be cor-
rupted. Moreover, SUNDR does not address confiden-
tiality issues.

Multiply-linked hash chains have been used for signa-
ture cost amortization in multicast source authentication
[20, 23, 35, 41]. Our spiral chain constructs are similar in
principle. One main difference however is that such hash

12

chains all assume a single sender signing the message
block containing the hashes. We can adopt these methods
to amortize signature costs in consecutive provenance
chain entries from the same principal, but with multi-
ple principals, we need chaining using non-repudiable
signatures. Also, many of the hash-chain schemes re-
quire the entire stream to be known a priori, an assump-
tion not applicable to provenance deployment settings.
Finally, the second spiral construction allows integrity-
preserving compaction, which is not possible with the
hash chains.

Integrity of cooperative XML updates has been dis-
cussed in [33], where document originators define a flow
path policy before dissemination and recipients can ver-
ify whether the document updates happened according
to this flow policy. In contrast, for flexibility and wider
applicability, our model and integrity assurances do not
require the existence of pre-defined flow path policies,
in order to provide the integrity assurances described in
Section 2.

6 Conclusion
In this paper, we introduced a cross-platform, low-
overhead architecture for capturing provenance informa-
tion at the application layer. Our approach provides fine-
grained control over the visibility of provenance infor-
mation and ensures that no one can add or remove entries
in the middle of a provenance chain without detection.
We implemented our approach for tracking the prove-
nance of data writes, in the form of a library that can be
linked with any application. Experimental results show
that our approach imposes overheads of only 1–13% on
typical real-life workloads.

Acknowledgments
We thank the anonymous reviewers and Alina Oprea for their
valuable comments; Bill Bolosky and John Douceur for sug-
gestions about file system distributions; and Kiran-Kumar
Muniswamy-Reddy and Margo Seltzer for help with the mi-
crobenchmarks. Hasan and Winslett were supported by NSF
awards CNS-0716532 and CNS-0803280. Sion was supported
by NSF awards CNS-0627554, CNS-0716608, CNS-0708025
and IIS-0803197.

References
[1] Monotone Distributed Version Control. Online at http://

www.monotone.ca/, accessed on December 22, 2008.

[2] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A five-
year study of file-system metadata. In Proc. of the 5th USENIX
conference on File and Storage Technologies (FAST), Berkeley,
CA, USA, 2007. USENIX Assoc.

[3] R. Aldeco-Perez and L. Moreau. Provenance-based Auditing of
Private Data Use. In Proc. of the BCS International Academic
Research Conference, Visions of Computer Science, Sept. 2008.

[4] R. S. Barga and L. A. Digiampietri. Automatic generation of
workflow provenance. In Moreau and Foster [36], pages 1–9.

[5] B. Berliner. CVS II: parallelizing software development. In
Proc. of the Winter 1990 USENIX Conference, pages 341–352.
USENIX Assoc., 1990.

[6] M. Blum. Coin flipping by telephone. In Proc. of Crypto, pages
11–15, 1981.

[7] U. Braun, S. L. Garfinkel, D. A. Holland, K.-K. Muniswamy-
Reddy, and M. I. Seltzer. Issues in automatic provenance collec-
tion. In Moreau and Foster [36], pages 171–183.

[8] U. Braun, A. Shinnar, and M. Seltzer. Securing provenance. In
Proc. of the 3rd USENIX Workshop on Hot Topics in Security
(HotSec), July 2008.

[9] P. Buneman, A. Chapman, and J. Cheney. Provenance manage-
ment in curated databases. In Proc. of the ACM International
Conference on Management of Data (SIGMOD), pages 539–550,
New York, NY, USA, 2006. ACM Press.

[10] P. Buneman, A. Chapman, J. Cheney, and S. Vansummeren. A
provenance model for manually curated data. In Moreau and Fos-
ter [36], pages 162–170.

[11] P. Buneman, S. Khanna, and W. C. Tan. Data provenance: Some
basic issues. In Proc. of the 20th Conference on Foundations
of Software Technology and Theoretical Computer Science (FST
TCS), pages 87–93, London, UK, 2000. Springer-Verlag.

[12] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. Lecture Notes in Computer
Science, 1973:316–330, 2001.

[13] Centers for Medicare & Medicaid Services. The Health Insurance
Portability and Accountability Act of 1996 (HIPAA). Online at
http://www.cms.hhs.gov/hipaa/, 1996.

[14] A. Chapman, H. Jagadish, and P. Ramanan. Efficient provenance
storage. In Proc. of the ACM SIGMOD/PODS Conference, Van-
couver, Canada, 2008.

[15] B. Collins-Sussman. The subversion project: Buiding a better
CVS. Linux J., 2002(94):3, 2002.

[16] J. R. Douceur and W. J. Bolosky. A large-scale study of file-
system contents. In Proc. of the ACM International Conference
on Measurement and Modeling of Computer Systems (SIGMET-
RICS), pages 59–70. ACM Press, 1999.

[17] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS
tracing of email and research workloads. In Proc. of the 2nd
USENIX Conference on File and Storage Technologies (FAST),
pages 203–216, Berkeley, CA, USA, 2003. USENIX Assoc.

[18] I. T. Foster, J.-S. Vockler, M. Wilde, and Y. Zhao. Chimera: A
virtual data system for representing, querying, and automating
data derivation. In Proc. of the 14th International Conference on
Scientific and Statistical Database Management (SSDBM), pages
37–46, Washington, DC, USA, 2002. IEEE Computer Society.

[19] J. Frew and R. Bose. Earth system science workbench: A data
management infrastructure for earth science products. In Proc.
of the 13th International Conference on Scientific and Statistical
Database Management (SSDBM), page 180, Washington, DC,
USA, 2001. IEEE Computer Society.

[20] R. Gennaro and P. Rohatgi. How to Sign Digital Streams. Infor-
mation and Computation, 165(1):100–116, 2001.

[21] J. Golbeck. Combining provenance with trust in social networks
for semantic web content filtering. In Moreau and Foster [36],
pages 101–108.

[22] O. Goldreich. Foundations of Cryptography. Cambridge Univer-
sity Press, 2001.

[23] P. Golle and N. Modadugu. Authenticating streamed data in the
presence of random packet loss. In Proc. of the Symposium on
Network and Distributed Systems Security (NDSS), pages 13–22,
2001.

13

[24] D. Halevy and A. Shamir. The LSD broadcast encryption scheme.
In Proc. of the 22nd Annual International Cryptology Conference
on Advances in Cryptology (CRYPTO), pages 47–60, London,
UK, 2002. Springer-Verlag.

[25] R. Hasan, R. Sion, and M. Winslett. Introducing secure prove-
nance: problems and challenges. In Proc. of the ACM workshop
on Storage security and survivability (StorageSS), pages 13–18,
New York, NY, USA, 2007. ACM.

[26] J. Katcher. Postmark: a new file system benchmark. Network
Appliance Tech Report TR3022, Oct 1997.

[27] N. Kogan, Y. Shavitt, and A. Wool. A practical revocation scheme
for broadcast encryption using smartcards. ACM Trans. Inf. Syst.
Secur., 9(3):325–351, 2006.

[28] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller. Mea-
surement and analysis of large-scale network file system work-
loads. In Proc. of the USENIX Annual Technical Conference,
pages 213–226, Berkeley, CA, USA, 2008. USENIX Assoc.

[29] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure un-
trusted data repository (SUNDR). In Proc. of the 6th Symposium
on Operating Systems Design and Implementation (OSDI), pages
121–136, 2004.

[30] J. Loeliger. Collaborating with Git. Linux Magazine, June 2006.

[31] C. A. Lynch. When documents deceive: Trust and provenance as
new factors for information retrieval in a tangled web. Journal
of the American Society for Information Science and Technology,
52(1):12–17, 2001.

[32] P. Maniatis and M. Baker. Secure history preservation through
timeline entanglement. In Proc. of the 11th USENIX Security
Symposium, pages 297–312, Berkeley, CA, USA, 2002. USENIX
Assoc.

[33] G. Mella, E. Ferrari, E. Bertino, and Y. Koglin. Controlled and
cooperative updates of XML documents in byzantine and failure-
prone distributed systems. ACM Trans. Inf. Syst. Secur., 9(4):421–
460, 2006.

[34] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 2001.

[35] S. K. Miner and J. Staddon. Graph-based authentication of dig-
ital streams. In Proc. of the IEEE Symposium on Security and
Privacy, pages 232–246, 2001.

[36] L. Moreau and I. T. Foster, editors. Provenance and Annota-
tion of Data, International Provenance and Annotation Work-
shop (IPAW), volume 4145 of Lecture Notes in Computer Science.
Springer, 2006.

[37] L. Moreau, P. Groth, S. Miles, J. Vazquez-Salceda, J. Ibbotson,
S. Jiang, S. Munroe, O. Rana, A. Schreiber, V. Tan, and L. Varga.
The provenance of electronic data. Commun. ACM, 51(4):52–58,
2008.

[38] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I.
Seltzer. Provenance-aware storage systems. In Proc. of the
USENIX Annual Technical Conference, pages 43–56, 2006.

[39] J. D. Myers and et al. A collaborative informatics infrastructure
for multi-scale science. In Proc. of the 2nd International Work-
shop on Challenges of Large Applications in Distributed Envi-
ronments (CLADE), page 24, Washington, DC, USA, 2004. IEEE
Computer Society.

[40] National Assoc. of Insurance Commissioners. Graham-Leach-
Bliley Act, 1999. www.naic.org/GLBA.

[41] A. Perrig, R. Canetti, D. Tygar, and D. Song. Efficient authenti-
cation and signing of multicast streams over lossy channels. In
Proc. of the IEEE Symposium on Security & Privacy, pages 56–
73, May 2000.

[42] Z. N. J. Peterson, R. Burns, G. Ateniese, and S. Bono. Design
and implementation of verifiable audit trails for a versioning file
system. In Proc. of the 5th USENIX conference on File and Stor-
age Technologies (FAST ’07), pages 93–106, Berkeley, CA, USA,
2007. USENIX Assoc.

[43] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Communications of the ACM, 33(6):668–676, 1990.

[44] D. Roselli, J. R. Lorch, and T. E. Anderson. A comparison of
file system workloads. In Proc. of the USENIX Annual Technical
Conference, Berkeley, CA, USA, 2000. USENIX Assoc.

[45] D. Sandler and D. S. Wallach. Casting votes in the auditorium.
In Proc. of the USENIX Workshop on Accurate Electronic Voting
Technology, Berkeley, CA, USA, 2007. USENIX Assoc.

[46] C. Sar and P. Cao. Lineage file system. Online at
http://crypto.stanford.edu/ cao/lineage.html, January 2005.

[47] B. Schneier and J. Kelsey. Secure audit logs to support computer
forensics. ACM Trans. Inf. Syst. Secur., 2(2):159–176, 1999.

[48] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang, S. McMains,
and V. Padmanabhan. File system logging versus clustering: a
performance comparison. In Proc. of the USENIX 1995 Technical
Conference, pages 249–264, Berkeley, CA, USA, 1995. USENIX
Assoc.

[49] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

[50] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Rec., 34(3):31–36, September
2005.

[51] R. Snodgrass, S. Yao, and C. Collberg. Tamper detection in audit
logs. In Proc. of the 30th International Conference on Very Large
Data Bases (VLDB), pages 504–515. VLDB Endowment, 2004.

[52] M. Szomszor and L. Moreau. Recording and reasoning over data
provenance in web and grid services. In Proc. of the Interna-
tional Conference on Ontologies, Databases and Applications of
SEmantics (ODBASE), volume 2888 of Lecture Notes in Com-
puter Science, pages 603–620, Catania, Sicily, Italy, Nov. 2003.

[53] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, S. Tsasakou, and
L. Moreau. Security issues in a SOA-based provenance system.
In Moreau and Foster [36], pages 203–211.

[54] The OpenSSL Project. OpenSSL: The open source toolkit for
SSL/TLS. www.openssl.org, April 2003.

[55] The U.S. Securities and Exchange Commission. Rule 17a-
3&4, 17 CFR Part 240: Electronic Storage of Broker-Dealer
Records. Online at http://edocket.access.gpo.gov/
cfr_2002/aprqtr/17cfr240.17a-4.htm, 2003.

[56] U.S. Public Law No. 107-204, 116 Stat. 745. The Public Com-
pany Accounting Reform and Investor Protection Act, 2002.

[57] N. N. Vijayakumar and B. Plale. Towards low overhead prove-
nance tracking in near real-time stream filtering. In Moreau and
Foster [36], pages 46–54.

[58] D. Wichers, D. Cook, R. Olsson, J. Crossley, P. Kerchen,
K. Levitt, and R. Lo. PACLs: An access control list approach
to anti-viral security. In Proc. of the 13th National Computer
Security Conference, pages 340–349, 1990.

[59] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In Proc. of the 2nd Biennial Conference
on Innovative Data Systems Research (CIDR), January 2005.

[60] J. Zhao, C. A. Goble, R. Stevens, and S. Bechhofer. Semantically
linking and browsing provenance logs for E-science. In Proc.
of the 1st International IFIP Conference on Semantics of a Net-
worked World (ICSNW), pages 158–176, 2004.

14

