
Please Permit Me: Stateless Delegated Authorization in Mashups

Ragib Hasan, Marianne Winslett
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{rhasan,winslett}@cs.uiuc.edu

Richard Conlan, Brian Slesinsky,
and Nandakumar Ramani

Google Inc.
Mountain View, CA 94043

{zeveck,skybrian,nramani}@google.com

Abstract

Mashups have emerged as a Web 2.0 phenomenon, con-
necting disjoint applications together to provide unified ser-
vices. However, scalable access control for mashups is dif-
ficult. To enable a mashup to gather data from legacy ap-
plications and services, users must give the mashup their
login names and passwords for those services. This all-or-
nothing approach violates the principle of least privilege
and leaves users vulnerable to misuse of their credentials
by malicious mashups.

In this paper, we introduce delegation permits – a state-
less approach to access rights delegation in mashups – and
describe our complete implementation of a permit-based
authorization delegation service. Our protocol and imple-
mentation enable fine grained, flexible, and stateless access
control and authorization for distributed delegated autho-
rization in mashups, while minimizing attackers’ ability to
capture and exploit users’ authentication credentials.

1 Introduction

Mashups have become popular as a rapid method of cre-
ating a new service through composition of several differ-
ent existing services on the Web [21]. Mashups provide the
user with an integrated view of the information that they
gather from back-end services, which can be stand-alone
websites (such as the bank and financial service sites ac-
cessed by Mint.com [2]), or web services accessed via web-
APIs (such as flickr’s photo API). Since building a mashup
from existing applications and services is much easier than
building a comparable service from scratch, mashups have
proliferated on the Internet [14, 27].

Providing a framework for authorization in a mashup is
difficult. Typically, users give the mashup their authentica-
tion credentials for the back-end services that the mashup
will access. The mashup then goes on to impersonate the
user to those back-end services, and gain access to those

services in the same manner as the user would. The back-
end services do not differentiate between the user access-
ing the service and the mashup accessing the service on be-
half of the user. Further, access to the back-end services is
all-or-nothing – users delegate all of their privileges to the
mashup, or else none of them.

A mashup built in such manner introduces many secu-
rity and privacy risks. For example, if the mashup server is
compromised, the attacker can take over all the accounts in
the back-end services by capturing the user authentication
credentials stored in the mashup. Also, mashups often get
more privileges than they really need. For example, even if
the mashup just needs to read a user’s calendar, the mashup
will receive all of the user’s calendar privileges.

To solve these security vulnerabilities, finer-grained del-
egation of access rights is needed. Specifically, we need ac-
cess delegation for mashups, in which users can selectively
delegate their back-end service privileges to the mashup.
In this paper, we make the following contributions toward
solving this problem: we identify the mashup authorization
requirements by examining the problem domain and exist-
ing solutions; we provide a scalable, stateless protocol for
access delegation using delegation permits; and we describe
our implementation of delegation permits and their associ-
ated protocols, which we developed for real applications.

The rest of the paper is organized as follows: we discuss
existing mashup authorization models and their limitations
in Section 2. We describe our permit-based approach, pro-
tocols, and the architecture of our prototype in Section 3.
Section 4 describes related work in the field of distributed
authorization. Finally, we conclude in Section 5.

2 Mashup Authorization: Problems and
Current Solutions

In this section, we explore the mashup authorization
problem and its associated security issues.

Figure 1 shows the architecture used by most mashups.
When registering herself at the mashup application, the user

Figure 1. Architecture of a typical mashup

adds back-end services to her profile. Usually the user al-
ready has credentials (typically logins and passwords) that
allow her to authenticate herself to each of these back-end
services directly. During registration at the mashup, the user
gives the mashup her authentication information at each of
the back-end services. Later, during actual use, the user logs
into the mashup. The mashup contacts an identity provider
(such as the box labeled IdP in Figure 1), which verifies
the user’s identity. The identity provider can be a local ser-
vice running in the same domain as the mashup, or a global
service such as OpenID [28]. After the user logs in at the
mashup, the mashup goes to the back-end services defined
in the user’s profile and accesses them on her behalf. Some
of the back-end services may have mashup support via an
API, while some others may not have any built-in support
for mashups. In the latter case, the mashup impersonates
the user, and logs into the back-end services via a simu-
lated browsing session. Some mashups also rely on screen
scraping, making them complicated and brittle. In any case,
the back-end services cannot differentiate between the user
logging in directly, and the mashup impersonating the user.
In the remainder of the paper, we refer to this as the straw-
man approach. This approach is adopted by, for example,
the personal finance mashups Mint.com and Yodlee.com,
which provide a summary of a user’s financial activities
by accessing financial data from back-end services such as
banks and credit card companies. A variant of the straw-
man approach uses HTML IFRAME tags. The mashup cre-
ates an IFRAME for each of the back-end services, and the
user logs into them. The mashup extracts data from the
IFRAMEs and displays it to the user. AuthSub [13] is
a protocol designed and deployed by Google for authoriza-
tion of Google services. In AuthSub, when the web applica-
tion needs to access the user’s Google service data, it makes
an AuthSub call to the Google Accounts URL. Google Ac-
counts responds with an “Access Consent” page. This page
prompts the user to log into their Google account and grant
or deny access to the Google service. If the user denies ac-
cess, she is directed to a Google page rather than back to

the web application. If the user successfully logs in and
grants access, Google Accounts redirects the user back to
the web application URL. The redirect contains an authen-
tication token good for one use; it can be exchanged for a
long-lived token. The web application contacts the Google
service, using the authentication token to act as an agent for
the user. If the Google service recognizes the token, it will
supply the requested data.

OAuth [4] is a new protocol for distributed authentica-
tion, and is designed to allow a consumer application to get
limited access to a service provider, as granted by the user.
In OAuth, a consumer application wishing to access a ser-
vice gets an unauthorized request token from the service.
This token is given to the user, and the user is redirected
to the service provider. The service provider gets user ap-
proval for the request, converts the token to an authorized
request token, and redirects the user to the consumer appli-
cation. The consumer extracts the authorized request token,
and uses it to get an access token containing a shared secret
from the service. The consumer can later use the token se-
cret together with the access token to access resources at the
service. OAuth requires the service to maintain the state of
all previously issued token secrets and access tokens.

Discussion. While the authorization schemes described
above are widely used in current-generation mashups, they
have serious limitations. The strawman scheme requires the
user to trust the mashup completely. The mashup receives
all the privileges the user has in a back-end service, and
there is no way for the user to restrict the mashup’s capa-
bility. A compromised mashup can leak user credentials or
impersonate the user maliciously. There is no explicit re-
vocation; the mashup can impersonate a user at back-end
services until the user changes her credentials manually at
the back-end. Some mashups will, of course, let the user re-
move credentials from the system, but this requires trusting
the mashup completely.

Phishing is another significant risk in the strawman
schemes [12]. An attacker can set up a look-alike site im-
personating a mashup and send phishing emails to users.
Gullible users can visit the phishing site and reveal their
usernames and passwords for the back-end services.

OAuth is a better approach in this regard, and promises
to solve the trust delegation problem. However, it assumes
a stateful server to provide nonces and ensure tokens are
single-use, which does not scale well [4]. Many IdPs and
in-house single sign-on solutions may be cookie-based with
stateless servers; thus setting up an OAuth instance would
require dedicated resources and support. The OAuth core-
spec [4] also does not define access restrictions or scope.

Google’s AuthSub [13], on the other hand, requires a
RPC API call to validate the token. The token itself is an
opaque identifier with no information about what back-end
service, mashup, and user the token pertains to. Therefore,

to decipher a token, additional RPC calls are required. An
AuthSub interaction only grants a single-use token. Getting
a session token requires an additional step, and the client
must explicitly revoke the session token at the end of the
session. Explicit revocation of the token may be awkward
in typical usage and in error situations, or even impossible;
thus there may be many valid, long-lived tokens floating
around. To allow the user to review and revoke any such
leftover tokens from previous session, the AuthSub server
must keep state for all issued session tokens. The resulting
state maintenance problems make this approach unscalable.
To remedy this problem, AuthSub has limited the number of
tokens that can be issued at one time. The AuthSub specifi-
cation does not allow “more than ten valid tokens per user,
per web application” [13].

AuthSub requires registration of both back-end and
front-end services. The latter is required in part so that all
requests from the front-end applications (mashups) to Auth-
Sub servers can be signed by the front-end in order to issue
a secure token. The registration also allows the front-end to
pre-supply a description of the authorization request, which
is displayed by AuthSub to the user. Mashup developers
consider registration to be cumbersome, and requiring each
front-end to have its own certificate is burdensome.

Registration headaches aside, an AuthSub request is less
verbose and flexible than the approach that we propose in
this paper. Notably, AuthSub requires the mashup to issue a
separate token request for each back-end service that it ex-
pects to access on the user’s behalf, resulting in many RPC
calls to the AuthSub server. AuthSub access decisions are
all-or-nothing; there is no notion of requesting a particular
level of service. Finally, AuthSub-based solutions do not, at
present, handle key rotation on the server side.

Based on the discussion above, we can list the common
issues and requirements in mashup authorization.

• Delegation and trust. Users should not have to
provide their user authentication information to the
mashup. Authorization information/tokens should not
be stored in the mashup; rather, such sensitive autho-
rization information should be stored at the user side.
Authorization tokens should have a limited lifespan,
and the user should be able to revoke them, if neces-
sary, before their expiration time.
• Maintaining state. To be scalable, the mashup autho-

rization system should be stateless. It is not reasonable
to assume that the back-end services maintain the state
for the authorization tokens that they have issued to
various mashups. Such detailed state maintenance is
not feasible in real life applications and services.
• Fine grained control. Users should be able to pro-

vide fine-grained delegation. In other words, mashups
should receive exactly the permissions they require
to function. For example, if all a mashup needs is

to read user data from a back-end service, then the
mashup should only receive READ permission instead
of READ-WRITE permission.

3 Delegation Permits

In real life, people get permits for fishing, driving, en-
tering national parks, and many other activities. Such per-
mits typically include the name of the issuer, the person to
whom it is issued, the issue date, expiration time, and pur-
pose of the permit. The person who checks permits does not
have to know the permit-holder, nor does she have to con-
tact the permit issuer to decide whether the holder is autho-
rized. This makes the authorization process decentralized
and scalable.

Our approach mimics real-life permit-based authoriza-
tion schemes. In our model, a mashup asks the user to
grant it delegation permits, which are unforgeable, limited-
lifetime, digital tokens specifying the access rights to spe-
cific services. The user can see what permissions the
mashup is requesting, and must approve the request be-
fore the permit can be issued. Once a permit is issued, the
mashup can use it until the permit expires or is revoked.

When the mashup accesses a back-end service, it sends
the appropriate permit along with its request. The back-end
service makes its own authorization decisions based on the
permit. The user can review the permits they have issued
as well as indicate whether any given permit should be re-
newed, revoked, or modified.

More formally, a delegation permit
P (U, M, A, I, E, R, sig) with issuance time I , expi-
ration time E, and signature sig is an unforgeable token
issued at the behest of user U to mashup M , in order to
delegate selected access rights at the back-end application
or service A. The access rights are represented by a set
R of user-intelligible string-valued permit descriptors.
The back-end service must trust the issuer who signs the
permit; the back-end service can verify the signature using
the public key of the issuer. In general, a mashup that
presents an untampered, unexpired permit to A will be able
to obtain certain authorizations as specified in R. However,
permits do not directly represent authorization decisions;
the back-end server has final authority over what actions
the mashup can take.

Permit descriptors are free-form text defined by a back-
end service, and made available to everyone, which denote
the different levels of access supported by the back-end ser-
vice. The format and semantics of the descriptors are de-
cided by each back-end. For example, a back-end may
use the descriptor “MyBugTracker READ-ONLY” to de-
note read-only access, while another back-end service may
choose to use “MyProjectDB RD-ONLY”. The back-end
services also make available a human readable explanation
string for each of the permit descriptors. The descriptors

also allow multiple levels of delegation: if a permit descrip-
tor ends in a *, then it can be further delegated. For example,
if a mashup receives a permit with “READ*”, it can issue a
new permit to another application that effectively encapsu-
lates the old permit, and provides a subset of the function-
ality of the original permit. Descriptors can be separated
with a /, and any subset can be further delegated. For in-
stance: the permit descriptor “READ*/WRITE*” allows the
recipient mashup to delegate the following permits to oth-
ers: READ, WRITE, READ/WRITE, READ*, WRITE*,
READ*/WRITE*, READ*/WRITE, READ/WRITE*.

Anyone can verify the signature on a permit, using the
issuer’s public key. When a back-end service is presented
with an unexpired, untampered permit from an issuer that
it trusts, the service can verify the permit locally with its
copy of the issuer’s public key, with no additional messages.
Specifically, the back-end server will not need to interact
with any remote party before authorizing the bearer of the
permit to carry out its requested actions.

In general, possession of an unexpired, untampered per-
mit with the appropriate permission descriptors is sufficient
in itself to authorize a user at a service that trusts the per-
mit issuer. Because knowledge of a permit is sufficient to
authenticate a user to the service, permits must be kept se-
cret. For this reason, we will only transfer permits across
the internet using SSL, unless the back-end service that the
permit is destined for requires authentication purely for in-
formative, rather than security, purposes.

A major advantage of delegation permits is that the back-
end can differentiate between the user logging in and a
mashup logging in on behalf of the user. This allows the
back-end to adapt output for computer consumption instead
of human readability, and to define limitations specific to
mashups, e.g. throttling. Also, if a security event occurs, an
audit will at least reveal whether it was the user directly or
a mashup that caused the event.

We use a client-server approach for issuing permits.
As shown in Figure 2, the architecture is composed of the
following components:

Permit Grant Service (PGS). The permit grant service
is responsible for issuing permits. Upon request from a
mashup, it prompts the user with a list of access rights re-
quested by the mashup. The user can choose which per-
missions to delegate to the mashup. The user’s choices are
encoded into the permit, and the permit is timestamped and
signed by the permit granting service. The permit is given
to the mashup, which can attach it to access requests to the
corresponding back-end service.
Permit History Service (PHS). The user can view, renew,
and revoke her existing permits through the permit history
service.
Permit Handler Service. The permit handler service runs

at the mashup and handles permits once they are received
from the permit granting service.

The PGS and PHS services can be centralized or dis-
tributed. In practice, there may be more than one permit
server in an organization, and the user can specify what per-
mit server to use when registering with a mashup. Users
may also use different permit servers for different mashups
(e.g., one for official use, another for personal activities).

To communicate with one another, the back-end applica-
tions and the mashup use a new library API that allows ser-
vice requests to be accompanied by permits. On the back-
end servers’ side of the API, the application writers must
provide additional code so that the applications can make
authorization decisions based on the permit descriptors.

3.1 Protocols

3.1.1 Permit Grant Protocol
Suppose that a user is about to access a mashup run-
ning at https://mycoolapp.com/app, which in turn
accesses back-end services mybugtracker.com and
myprojectdb.com. The user’s PGS is running at
https://permitserver.com/permit. The Permit
Granting Protocol ensures that the user will always be pre-
sented with a delegate-permissions page the first time she
logs in to a mashup that will need delegated authorizations.
The user can grant or deny the mashup’s request for each
permit, and can choose to have her decisions recorded for
longer-term use. If the user opts to remember her deci-
sions, then she will receive a signed permanent cookie so
that repeated attempts to access the same back-end applica-
tion with the same access requests (or a subset thereof) do
not result in another trip to the delegate-permissions page.

Figure 2 shows the sequence of events that take place
during an invocation of the Permit Grant Protocol:

1. The user points her browser to the mashup page at
https://mycoolapp.com/app. During the lo-
gin process, the mashup authenticates her using its IdP
(this interaction with the IdP is not shown in the fig-
ure).

2. The mashup checks whether the user has the nec-
essary permits already stored in her cookie for the
mashup’s domain. If not, the mashup redirects her
browser to the PGS at https://permitserver.
com/permit?PERMIT_REQUEST_ARGS, where
PERMIT_REQUEST_ARGS indicates the requested
permit descriptors for all the back-end services it ex-
pects to access on the user’s behalf. The format of this
redirect is described in the Appendix.

3. The browser follows the redirect to the PGS.
4. The PGS authenticates the user and parses the re-

quested permit descriptors and back-end service infor-

Figure 2. Permit-based delegation architecture, and the Permit Grant Protocol.

mation from the redirect URL. Using these permit de-
scriptors, and corresponding human-readable descrip-
tions obtained from the back-end services, the PGS
renders its permission granting page with the list of
requested permissions.

5. The user tells the PGS whether she is willing to del-
egate the requested permissions to the mashup and
whether her decisions should be remembered for fu-
ture sessions.

6. If the user approves the delegation requests, the
PGS issues the appropriate permits, stores a
signed list of the user choices in the permit his-
tory cookie for the domain of the PGS, and redi-
rects her browser to the permit handler service at
https://mycoolapp.com/permithandler?
PERMIT_RESPONSE_ARGS. The format of the
redirect is described in detail in the Appendix.

7. The browser follows the redirect to the permit handler
service.

8. The permit handler service reads the permits, stores
them in a permit cookie for the mashup’s domain, and
then redirects the user to https://mycoolapp.
com/app.

9. Now MyCoolApp can find the required permits by
reading the permit cookie for its domain. It sends
service requests to MyBugTracker and MyProjectDB,
with each request accompanied by the corresponding
permits. (If the user did not approve all the requested
permits, it is up to the mashup developer to decide
what to do. The mashup can choose to provide the

user with a restricted service based on the permissions
granted, or the mashup can display an error message
regarding unavailability of required permits.)

10. MyBugTracker and MyProjectDB extract the corre-
sponding permits from the requests. After validating
the permit signatures with a cached copy of the PGS’s
public key and checking the permits’ expiration time,
they provide the requested service to the mashup.

3.1.2 Permit review and revocation protocol
To review her permits, the user goes to the Permit History
Server. The following protocol is used for permit history
review and revocation:

1. The user points her browser at the PHS at https:
//www.permitserver.com/history.

2. The PHS parses the information in the user’s permit
history cookie for the PHS domain and presents the
list of current permits to the user.

3. The user can ask the PHS to renew a permit. This
causes the PHS to redirect to the PGS along with a
request to renew the appropriate permits. The renewal
is accomplished by redoing steps 3 to 8 of the Permit
Grant Protocol.

4. The user can also revoke all or a subset of her permits.
Revocation in this case means removal of the permits
from the permit cookie belonging to the mashup’s do-
main. To do that, the user selects the revocation op-
tion at the PHS. This causes the PHS to redirect to the

permit handler server of the chosen mashup, with a re-
quest to delete the permit. (The PHS cannot do this
directly as the permit cookie belongs to the mashup’s
domain.)

5. Upon a request from the PHS, the permit handler ser-
vice deletes from the user’s permit cookie those per-
mits that the user wants to revoke.

6. The permit handler service redirects the user back to
the PHS.

3.2 Attack Resistance

A mashup authorization system can be attacked in sev-
eral ways. The mashup application itself may be malicious,
or the server hosting the mashup may be taken over by an
adversary. In that case, we want to limit the extent to which
the adversary can misuse the permits. Since we store the
permits as browser side cookies, a compromised mashup
server cannot divulge permits issued prior to the compro-
mise unless it chose to cache the old permit cookies before
the attack.

If a user logs into the compromised mashup, the adver-
sary can obtain newly issued permits by capturing them at
the permit handler. Since her permits give the mashup a
limited set of rights, the attacker can only take the actions
allowed by the permits. As permits are of limited lifetime,
old permits will expire and become useless. As long as the
user does not continue using the compromised server, the
adversary has a limited window of opportunity to access
the back-end services. Since the PGS authenticates the user
when issuing permits, a compromised mashup cannot send
fake user requests and get permits.

A compromised permit handler can also refuse to delete
permits when requested to do so by the PHS, or could fail
to insert new permits into the permit cookie when requested
to do so by the PGS (denial of service). In those situations,
the permit history cookie can become inconsistent with the
actual permit cookie. A compromised handler could also
update the permit cookie appropriately, but keep a copy of
an old version and substitute it for the correct permit cookie
during a subsequent session. Of course, reuse of revoked
credentials in this manner is only possible within the life-
time of the original credential.

The other defensive measure against a compromised
mashup is to use permits that are only good for a sin-
gle session, as described in more detail in the Appendix.
Such permits have to be reissued each time the user logs
into the mashup, and have a very limited lifetime. There-
fore, the window of opportunity during which the adver-
sary can attack is quite limited. In general, the permit ex-
piration time must be chosen to balance usability (users
should not be prompted for permits too frequently) and risk
(permits should expire quickly enough to prevent a mali-
cious/compromised mashup from misusing old permits).

The user’s own machine can also be compromised and
the user’s browser taken over. We limit the potential for per-
mit leaks under these circumstances by using session cook-
ies for permits stored in the browser. Once the user logs out
and closes her browser, the permit cookies are not available
to the adversary. To be able to impersonate the user at the
mashup and exploit the permit cookies in that manner, the
attacker must be able to authenticate as the user at the IdP,
which will be very hard to do directly. A more effective ap-
proach is to wait until the user has already authenticated at
the IdP and then hijack the user’s session with the mashup.
This same sort of attack can be employed with other ap-
proaches to mashup authorization as well, of course.

Attackers can also launch man-in-the-middle attacks by
listening to the communication between the different com-
ponents. Hence, we require all communication to take place
over SSL. There is still a chance of a DNS spoofing attack,
where an adversary spoofs the DNS to hijack the commu-
nication between the various components. However, such
attacks are a problem for all web-based authorization sys-
tems.

Finally, adversaries can launch a denial of service (DOS)
attack by overwhelming the Permit Grant Service. To pre-
vent the PGS from becoming a single point of failure,
our design allows multiple PGSs to be used. By running
the PGS behind a load balancing mechanism such as a
Netscaler [1], we can achieve proper load balancing, and
help to defend against DOS attacks.

3.3 Implementation

To demonstrate our approach, we implemented a permit-
based authorization system prototype using Java 1.5, and
did a test deployment in a corporate network. We chose two
existing applications, a bug tracking service and a project
database system, and wrote a prototype mashup (MyCool-
Mashup) that integrated these two back-end services. In
our test deployment, we used our in-house corporate single
sign-on system as the identity provider IdP.

For simplicity, we created the permit granting service
and the permit history service as servlets running under
the IdP server. However, we could have used any IdP, or
run the PGS/PHS as a separate service in a different server.
Similarly, we implemented the Permit History Service as a
servlet running under the IdP server. We implemented the
permit handler service as a component servlet running in
the mashup server. We implemented the Permit Granting
Protocol and history access protocols as described earlier.
We stored the permit history in a persistent cookie under
the domain of the PHS, in the user’s browser.

For passing the permit requests and the issued permits,
we used URLs and GET/POST parameters. Permits are
stored in the browser using a session cookie (for one-time
permits) or a permanent cookie (for auto-approved permits)

Figure 3. Delegate-permits page from our im-
plementation.

under the domain of the mashup application. Details of the
delegation permit format, permit cookie format, permit his-
tory cookie format, and the various redirect formats can be
found in the Appendix.

The implementation also involved providing an informa-
tive user interface for the delegate-permissions page, and
the permit history page. The design was evaluated by our in-
house user experience group for usability, and found satis-
factory. Figure 3 shows a screenshot of our delegate-permits
page, showing a request from MyCoolMashup for two per-
mits from two back-end services.

4 Related Work

As an emerging application, mashups have been studied
by many researchers [27]. Researchers have investigated
the process of creating a mashup [30], the utility of mashups
for data integration in an enterprise setting [17, 26, 31], a
mashup fabric for intranet applications [5], and the advan-
tages of mashups in learning environments [29]. Novel uses
of mashups include deep web search [14], service composi-
tion [24], and service oriented computing [9].

Issues associated with mashup security have also been
explored by researchers [11, 22]. MashupOS is a set of op-
erating system abstractions for ensuring security and iso-
lation of web services inside a browser [15]. Researchers
have observed the threat of man-in-the-middle attacks for
mashups [19], proposed a secure components model for
mashups [20], and proposed an approach for secure cross-
domain communication in Web mashups [16]. None of
these works addresses mashup authorization and delegation
problems; their main focus is providing security against
cross-site scripting attacks, an important issue that is or-
thogonal to the topic of our work.

A good summary of authentication and authorization
infrastructures can be found in [25]. Kahan offered an

early proposal for a capability based authorization model
for web-based applications [18]. Chadwick et al. pro-
posed an authorization delegation scheme based on X.509
certificates [10]. The Grid computing community has ex-
plored approaches to credential delegation for grid services.
The four main approaches for credential delegation are the
delegation services of the Globus Toolkit, EGEE’s gLite,
the Java-based Commodity Grid (CoG) Kit, and MyProxy
[3, 6]. However, none of these allow users to limit the rights
of the recipient of the delegated authorization, which is one
of the key issues in mashup authorization and delegation.
Further, approaches designed for the Grid assume that users
have cryptographic credentials such as X.509 credentials,
which is not the case for most mashup users.

Researchers have also looked at the problem of limit-
ing delegated rights in general. Delegation Logic [23] in-
cludes constructs that can be used to limit the depth of
delegation, i.e., sub-delegation. This does not solve the
more general problem of restricted delegation of authoriza-
tion rights, though this might be useful for building a hier-
archy of mashups. KeyNote [8] and PolicyMaker [7] do
allow further restriction of a delegee’s rights. However,
these are capability based systems that are oriented towards
environments where users have public keys and X.509 or
SPKI/SDSI credentials, whereas with mashups, the users
typically authenticate themselves via usernames and pass-
words at the back-end services, with no public keys.

5 Conclusion

As mashups become more widespread in the Internet, en-
suring a proper authorization model for mashups becomes
essential. In this paper, we presented a scalable, stateless
delegated authorization protocol and a practical implemen-
tation using delegation permits. Our permit based access
delegation model allows users to fine-tune their release of
access rights to mashups, while the authorization servers
and back-end applications do not have to maintain elaborate
state information. This makes our approach scalable. Our
practical implementation of a proof of concept proves the
usability of such a permit based approach. Delegation Per-
mits include a number of features not yet present in OAuth,
and we expect some of them may well inform the devel-
opment of OAuth extensions. While we do not necessarily
expect permits to be adopted by the major players willing to
handle distributed state management, we do believe it will
be a useful model for those interested in maintaining state-
less servers, either internally or on the Internet.

References

[1] Citrix NetScaler: Web application delivery with the
highest availability, security and performance. On-

line at http://www.citrix.com/English/ps2/
products/product.asp?contentID=21679.

[2] Mint.com personal finance website. Online at http://
www.mint.com.

[3] Web services delegation via MyProxy. Online at http://
grid.ncsa.uiuc.edu/myproxy/delegation/.

[4] OAuth Specification 1.0. Online at http://oauth.net/
core/1.0, 2007.

[5] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl,
L. Mau, Y. Ng, D. Simmen, and A. Singh. Damia: a data
mashup fabric for intranet applications. In Proceedings of the
33rd International Conference on Very Large Data Bases,
pages 1370–1373. VLDB Endowment, 2007.

[6] J. Basney, M. Humphrey, and V. Welch. The myproxy on-
line credential repository. Software- Practice & Experience,
35(9):801–816, 2005.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proceedings of the 1996 IEEE Sympo-
sium on Security and Privacy, pages 164–173, Oakland, CA,
1996.

[8] M. Blaze, J. Ioannidis, and A. Keromytis. Experience with
the KeyNote trust management system: Applications and
future directions. In Proceedings of the 1st International
Conference on Trust Management, pages 284–300. Springer,
2003.

[9] S. Cetin, N. Altintas, H. Oguztuzun, A. Dogru, O. Tufekci,
and S. Suloglu. A mashup-based strategy for migration to
service-oriented computing. In Proceedings of the IEEE In-
ternational Conference on Pervasive Services, pages 169–
172, 2007.

[10] D. Chadwick, A. Otenko, and E. Ball. Role-based access
control with x.509 attribute certificates. IEEE Internet Com-
puting, 07(2):62–69, 2003.

[11] M. Davidson and E. Yoran. Enterprise security for web 2.0.
COMPUTER, pages 117–119, 2007.

[12] R. Dhamija, J. Tygar, and M. Hearst. Why phishing works. In
Proceedings of the SIGCHI conference on Human Factors in
computing systems, pages 581–590. ACM Press New York,
NY, USA, 2006.

[13] Google. Google account authentication (authsub). Online
at http://code.google.com/apis/accounts/
AuthForWebApps.html.

[14] T. Hornung, K. Simon, and G. Lausen. Mashing up the
deep web - research in progress. In 4th International Con-
ference on Web Information Systems and Technologies (WE-
BIST) 2008, pages 58–66, Funchal, Madeira, Portugal, May
2008.

[15] J. Howell, C. Jackson, H. Wang, and X. Fan. MashupOS:
Operating system abstractions for client mashups. In Pro-
ceedings of the Workshop on Hot Topics in Operating Sys-
tems, May 2007.

[16] C. Jackson and H. Wang. Subspace: secure cross-domain
communication for web mashups. In Proceedings of the 16th
International Conference on World Wide Web, pages 611–
620. ACM Press New York, NY, USA, 2007.

[17] A. Jhingran. Enterprise information mashups: integrating in-
formation, simply. In Proceedings of the 32nd International
Conference on Very Large Data Bases, pages 3–4. VLDB
Endowment, 2006.

[18] J. Kahan. A capability-based authorization model for the
world-wide web. Computer Networks and ISDN Systems,
27(6):1055–1064, 1995.

[19] P. Karger. Mashups legitimize man-in-the-middle attacks:
A position paper. In IEEE Web 2.0 Security and Privacy
Workshop. IEEE, 2007.

[20] F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and
S. Yoshihama. Smash: secure component model for cross-
domain mashups on unmodified browsers. In WWW ’08:
Proceeding of the 17th International Conference on World
Wide Web, pages 535–544, New York, NY, USA, 2008.
ACM.

[21] N. Kulathuramaiyer. Mashups: Emerging application devel-
opment paradigm for a digital journal. Journal of Universal
Computer Science, 13(4):531–542, April 2007.

[22] G. Lawton. Web 2.0 creates security challenges. IEEE COM-
PUTER, 40:13–16, 2007.

[23] N. Li, B. Grosof, and J. Feigenbaum. Delegation logic:
A logic-based approach to distributed authorization. ACM
Trans. Inf. Syst. Secur., 6(1):128–171, 2003.

[24] X. Liu, Y. Hui, W. Sun, and H. Liang. Towards service
composition based on mashup. In Proceedings of the IEEE
Congress on Services, pages 332–339, 2007.

[25] J. Lopez, R. Oppliger, and G. Pernul. Authentication and
authorization infrastructures (aais): a comparative survey.
Computers & Security, 23(7):578–590, 2004.

[26] S. K. Makki and J. Sangtani. Data mashups & their applica-
tions in enterprises. In Third IEEE International Conference
on Internet and Web Applications and Services, pages 445–
450, Athens, Greece, June 2008.

[27] D. Merrill. Mashups: The new breed of web app. IBM Web
Architecture Technical Library, 2006.

[28] D. Recordon and D. Reed. Openid 2.0: a platform for user-
centric identity management. In DIM ’06: Proceedings of
the second ACM workshop on Digital identity management,
pages 11–16, New York, NY, USA, 2006. ACM.

[29] C. Severance, G. Hardin, and A. Whyte. The coming func-
tionality: mash-up in personal learning environments. Inter-
active Learning Environments, 16(1):47–62, 2008.

[30] N. Zang, M. Rosson, and V. Nasser. Mashups: who? what?
why? In CHI ’08: CHI ’08 extended abstracts on Human
factors in computing systems, pages 3171–3176, New York,
NY, USA, 2008. ACM.

[31] J. Zou and C. Pavlovski. Towards accountable enterprise
mashup services. In Proceedings of the IEEE Interna-
tional Conference on e-Business Engineering, pages 205–
212. IEEE Computer Society Washington, DC, USA, 2007.

Appendix

This appendix contains details of our implementation of
the permit-based delegated authorization system.

Format of Delegation Permits

The format of the Delegation Permit is presented in Table
1, and an example is shown in Table 2. Each field in a del-
egation permit (DP) is utf8 text; binary objects are base64-
encoded as noted. Fields are concatenated together into the
DP, demarcated by “|”. The DP data structure is intended
to allow for optional fields and does not enforce field or-
dering (except for the prefix, which must come first). The
initial optional fields that the PGS currently recognizes are
included below, but this does not represent an exhaustive list
of what may eventually be included. At this time the PGS
will simply ignore fields that it does not understand and it is
assumed that initial client libraries will do the same

Permit Grant Service (PGS)

The default behavior of the PGS is be to prompt for au-
thorization every time the mashup requests it. Decisions
will be remembered by storing a cookie in the PGS’s do-
main, where the cookie will store the information shown in
Table 3 (similarly to how that information is stored in the
permit). An example permit cookie is shown in Table 4.

When the PGS receives a request, it will inspect any pre-
sented state cookies to determine if the currently requested
permissions are a subset of those stored in the cookie. If
so, the user will not be re-prompted. If not, then the user
will be shown the delegate-permissions screen with indica-
tions of which permissions are currently granted and what
has changed, with the ability to grant or deny changes.

A set of permissions is a subset of what is stored in the
cookie only if:

• The user ID matches.
• The service matches.
• The destination URL in the request is a valid URL for

the specified service.
• The time since the last interactive authorization is not

too long (e.g., on the order of a month).
• Each resource in the request is in the cookie, paired

with the same permit descriptor.

Permit History Service (PHS)

The PHS can be used by the user to view what per-
mits the user has granted to various applications in the past.
When the user goes to the Permit History Service, a list of
application servers, and the group of permits granted to each

Param Description
Permit
prefix

This is a freeform text field that represents the
permit’s protocol variant. This document de-
scribes prefix “permit v1”, but it is assumed
other permits will be similar

uid User ID for whom this permit was created
g Requested LDAP groups for which the user’s

membership is verified, delimited by “,”
ng Requested LDAP groups for which the user is

not a member, delimited by “,”
s The service for which this permit was created.

This will take the form of a DNS name plus
an HTTP URI prefix denoting what subsec-
tion of that site the ticket applies to. For ex-
ample: “abc.acme.com/” applies to the entire
abc.acme.com web site, “www.acme.com/eng”
applies to any URI on www.acme.com that
begins with “/eng”, “foobar.com:9999/” ap-
plies to any URI on foobar.com using the non-
standard port 9999

ds Delegated service label. A human-readable la-
bel representing the service which delegated
access was requested

pd Permit descriptor. A human-readable label rep-
resenting some level of authorization (for ex-
ample “MyBugTracker Read-Only Access” or
“MyProjectDB Read Self Access”)

lt Login time. The time that the user’s credentials
were verified (GMT formatted “YYYYMMD-
Dhhmmss”, e.g. “20040308162144”)

pt Permit issue time. The time at which the permit
was actually issued to the user (GMT formatted
“YYYYMMDDhhmmss”)

at Permit approval time. The time at which the
user last saw the delegate-permissions screen
and actually authorized this permit (GMT for-
matted “YYYYMMDDhhmmss”)

sig A digital signature on the “|”-delimited con-
catenation of the other permit fields ordered as
they appear in the permit (with no pipe at the
beginning or end). The signature consists of
three fields separated by “|”:

• alg – the signature algorithm (typically
‘DSA’)

• kid – the key identifier (as passed in the
request)

• sig – the base-64-encoded SHA1withDSA
digital signature

Table 1. Details of delegation permit format

permit_v1|uid=testuser|g=eng|ng=hip|
s=mycoolapp.com/|ds=MyCoolApp|pd=
MyBugTrackerRead-Only|lt=2007022912000|
pt=2007022912000|at=2007022912000|alg=
DSA|kid=FOO|sig=B64ENCODEDDSASIG|

Table 2. Example delegation permit

Parameter Description
UserID User for whom this permit was created.
service The service for which this permit was cre-

ated.
authTime The last time the user actually authorized

these permissions. In format “YYYYM-
MDDhhmmss”, e.g. “20040308162144”.

PermitReq For each permit request, this field records
the resource for which the permit is re-
quested, and the permit descriptor.

sig Signature for this cookie.

Table 3. Format of permit cookies

server, is displayed. The user can choose to delete any of the
permission groups. Permit grant history is maintained in a
cookie named “SSO PERMIT HISTORY ”. When the
user clicks on delete for a permit group, the corresponding
permit group is removed from the cookie. The PHS also
redirects to the permit handler service of the corresponding
mashup server and requests it to delete the selected permits
from its permit cookie.

Redirects to the Permit Granting Service

When an application requires a permit to access another
service on behalf of the user, it communicates that need by
redirecting the client browser to the PGS along with its re-
quirements. The parameters provided to the PGS as HTTP
GET-encoded parameters are shown in Table 5:

Redirects to the Mashup’s Permit Handler

Every relying application server is required to provide
the following support at its permit handler URL, which
is the name of its service as provided to the PGS +
“permithandler”, such as “https://mycoolapp.com/
app/permithandler”. The URL will receive requests
as GET or as POST with the parameters given in Table 6.

Typically the mashup’s permit handler will:

1. Parse the request to retrieve the permits (fails on parse
errors).

2. Ensure that the permit prefixes all match what was ex-
pected.

3. Validate the signatures on the permits.

|alice|mycoolapp.com/app|https:
//mycoolapp.com/app/start.html|
MyBugTracker:MyBugTrackerRead-OnlyAccess|
MyProjectDB:MyProjectDBRead-OnlyAccess|
SIGNATURE|

Table 4. Example permit cookie

Param Required? Description
v required The prefix indicating the ver-

sion/purpose of the permit
s required The name of the service issuing

the permit request
d required The destination URL to which

the user should be redirected af-
ter the permission granting pro-
cess is complete

g optional, re-
peated

Each parameter specifies a group
for which the application wants
to know the user’s membership,
using the same “cn” or “ou/cn”
encoding as used in permits. If
not present, no group info is re-
turned.
foreach i = 1 ... n (where n is
the number of requested per-
mits)

pi res required The name of the resource for
which the request is seeking a
permit

pi desc required The requested permit descriptor
k required The first three characters of the

SHA-1 hash of the public key
corresponding to the requested
private signature key

Table 5. Redirect format

4. Ensure that the username matches across all permits
and with the login ticket.

5. Copy the validated permits into domain-restricted ses-
sion cookies.

6. Issue a redirect to the destination page.

Param Description
p A new permit for this server to use when mak-

ing back-end requests (there can be one or more
p parameters, each representing a different per-
mit)

d The URL to redirect to after processing the per-
mits.

Table 6. GET/POST Parameters for Redirects
to Mashup Permit Handlers

